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ABSTRACT
Given a large time-evolving graph, how can we model and
characterize the temporal behaviors of individual nodes (and
network states)? How can we model the behavioral transi-
tion patterns of nodes? We propose a temporal behavior
model that captures the “roles” of nodes in the graph and
how they evolve over time. The proposed dynamic behav-
ioral mixed-membership model (DBMM) is scalable, fully au-
tomatic (no user-defined parameters), non-parametric/data-
driven (no specific functional form or parameterization), in-
terpretable (identifies explainable patterns), and flexible (ap-
plicable to dynamic and streaming networks). Moreover, the
interpretable behavioral roles are generalizable and compu-
tationally efficient. We applied our model for (a) identify-
ing patterns and trends of nodes and network states based
on the temporal behavior, (b) predicting future structural
changes, and (c) detecting unusual temporal behavior tran-
sitions. The experiments demonstrate the scalability, flexi-
bility, and effectiveness of our model for identifying interest-
ing patterns, detecting unusual structural transitions, and
predicting the future structural changes of the network and
individual nodes.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation

Keywords
Graph mining, dynamic network models, dynamic roles

1. INTRODUCTION
In recent years, we have witnessed a tremendous growth

in both the variety and scope of network datasets. In partic-
ular, network datasets often record the interactions and/or
transactions among a set of entities—for example, personal
communication (e.g., email, phone), online social network
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interactions (e.g., Twitter, Facebook), web traffic between
servers and hosts, and router traffic among autonomous sys-
tems. A notable characteristic of these activity networks, is
that the structure of the networks change over time (e.g.,
as people communicate with different friends). These tem-
poral dynamics are key to understanding system behavior,
thus it is critical to model and predict the network changes
over time. An improved understanding of temporal patterns
will facilitate for example, the development of software sys-
tems to optimally manage data flow, to detect fraud and
intrusions, and to allocate resources for growth over time.

Although some recent research has focused on the anal-
ysis of dynamic networks [17, 3, 5, 12, 4, 21], there has
been less work on developing models of temporal behavior
in large scale network datasets. There has been some work
on modeling temporal events in large scale networks [2, 31]
and other work that uses temporal link and attribute pat-
terns to improve predictive models [26]. In addition, there is
work on identifying clusters in dynamic data [5, 27] but these
methods focus on discovering underlying communities over
time—sets of nodes that are densely connected together. In
contrast, we are interested in uncovering the behavioral pat-
terns of nodes in the graph and modeling how those pat-
terns change over time. In the simple example below, the
red node is a “star-center” and the
blue represents peripheral nodes. At
some later time, the top nodes tran-
sition to a“near-clique”while the two
bottom nodes become inactive.

The recent work on dynamic mixed-membership stochas-
tic block models (dMMSB: [9, 30]), is to our knowledge,
one of the only methods suitable for modeling node-centric
properties over time. The dMMSB model identifies groups of
nodes with similar patterns of linkage and characterizes how
group memberships change over time. However, dMMSB
assumes a specific parametric form where the groups are
defined through linkage to specific nodes (i.e., in particu-
lar types of groups) rather than more general forms of node
behavior over dynamic node sets. More importantly the
dMMSB estimation algorithm is not scalable, which makes
the method unsuitable for analysis of large graphs.

In this work, we aim to develop a descriptive model to an-
swer the following questions for dynamic network datasets:
1. Identify dynamic patterns in node behavior. What

types of high level temporal patterns and trends do the
data exhibit? Are behaviors cyclical or predictable? Do
nodes have different behavioral patterns?

2. Predict future structural changes. Can we predict



when a node’s role will change (e.g., a node with high
in-degree transitions to a node with high betweenness)?
Is the overall structure of the graph becoming more or
less predictable over time?

3. Detect unusual transitions in behavior. Are there
nodes and/or points in time with significantly different
behavioral patterns?

To facilitate the investigation of these questions, we pro-
pose to model node “roles” and how they change over time.
Informally, roles can be viewed as sets of nodes that are
more structurally similar to nodes inside the set than out-
side whereas communities are sets of nodes with more con-
nections inside the set than outside. Specifically, to focus
on node behavior (rather than the complimentary concept
of community finding) we use non-parametric feature-based
roles.

Using these non-parametric roles, which can generalize
to new unseen nodes, we propose a novel dynamic behav-
ioral mixed-membership model (DBMM) suitable for large,
unbounded, time-evolving networks. The DBMM discov-
ers features (i.e., using the graph and intrinsic attributes),
extracts these features for all timesteps, and automatically
learns behavioral “roles” for nodes at each timestep. The
number of behavioral roles are selected automatically using
MDL or AIC. Afterwards, we learn behavior transition ma-
trices for each node (i.e., given a node role ri, what is the
probability of transitioning to rj at the next point in time).

Our proposed DBMM technique allows us to investigate
the properties of temporal networks and understand both
global and local behaviors, detect anomalies, as well as pre-
dict future structural changes. The main strengths of the
approach include:
? Automatic. The algorithm doesn’t require user-defined

parameters.
? Scalable. The learning algorithm is linear in the num-

ber of edges in the time-interval under consideration. It
is also easily parallelizable as features, roles, transition
models can be learned independently at each time.

? Non-parametric and data-driven. The model struc-
ture (i.e., number of parameters) and more generally the
parameterization depends on the properties of the time-
evolving network.

? Interpretable and intuitive. The DBMM is based on
an intuitive behavioral representation (structural prop-
erties) of the network and individual nodes. It identifies
explainable patterns, trends, and aids in understanding
the underlying dynamic process.

? Flexible. The definition of behavior in our model can
be tuned for specific applications. The algorithm is ap-
plicable for all types of time-evolving networks.

We demonstrate the application our our model on several
real world datasets, showing that it both accurately predicts
future structural changes as well as identifying interesting
temporal patterns and anomalies. We discuss the scalabil-
ity of the approach and notably we apply the DBMM to
networks with up to 300,000 nodes and 4 million edges—
datasets that are orders of magnitude larger than could be
modeled with dMMSBs.

2. DYNAMIC BEHAVIORAL MODEL
Our goal is to model the behavioral roles of nodes and

their evolution over time. Given a sequence of network
snapshots (graphs and attributes), the Dynamic Behavioral

Mixed Membership Model (DBMM) consists of (1) automat-
ically learning a set of representative features, (2) extracting
features from each graph, (3) discovering behavioral roles
(4) iteratively extracting these roles from the sequence of
network snapshots over time and (5) learning a predictive
model of how these behaviors change over time. As an aside,
let us note that DBMM is a scalable general framework for
analyzing temporal behavior as the model components can
be replaced by others and each component can be appro-
priately tuned for any application (e.g., for the feature set,
any feature construction system from [25] can conceivably
be used).

2.1 Data Model for Temporal Networks
Given a dynamic network D = (N , E), where N is the set

of nodes and E is the set of edges in D, a network snapshot
St = (Nt, Et) is a subgraph of D where Et are the edges in
E active at time t and Nt are the endpoints of the edges Et.

2.2 Representing Network Behavior
The idea is to discover a set of underlying roles, which

together describe the behaviors observed in the network, and
then assign a probability distribution over these roles to each
node in the network, which explain that node’s observed
behavior. Roles are extracted via a two-step process.

Feature Discovery. The first step is to represent each
active node in a given snapshot graph St using a set of rep-
resentative features. For this task, we leverage [14]. The
method constructs degree and egonet measures (in / out,
weighted, ...), then aggregates these measures using sum (or
mean) creating recursive features. After each aggregation
step, correlated features are pruned using logarithmic bin-
ning. The aggregation proceeds recursively, until there are
no new features. Formally, we discover a set of features at
time t denoted Vt such that Vt is an nt× f matrix where nt

is the number of active nodes and f is the number of features
learned from the snapshot graph St. The features are ex-
tracted for each network snapshot resulting in a sequence of
node-feature matrices, denoted V = {Vt : t = 1, ..., tmax}.

Role Discovery. The next step is to automatically discover
groups of nodes (representing common patterns of behav-
ior) based on their features. For this purpose, we use Non-
negative Matrix Factorization (NMF) to extract roles [15]
and extend it for a sequence of graphs. Given a sequence of
node-feature matrices, we generate a rank-r approximation
GtF ≈ Vt where each row of Gt ∈ Rn×r represents a node’s
membership in each role and each column of F ∈ Rr×f

represents how membership of a specific role contributes
to estimated feature values. For constructing the “closest”
rank-r approximation we use NMF (multiplicative update
method) because of interpretability and efficiency, though
any other method for constructing such an approximation
may be used instead (SVD, spectral decomposition). More
formally, given a non-negative matrix Vt ∈ Rnt×f and a
positive integer r < min(nt, f), find non-negative matrices
Gt ∈ Rnt×r and F ∈ Rr×f that minimizes the functional,

f(Gt,F) =
1

2
||Vt −GtF||2F

We iteratively estimate the node-role memberships for
each network snapshot G = {Gt : t = 1, ..., tmax} given F
and V = {Vt : t = 1, ..., tmax} using NMF. Afterwards, we



Table 1: Dataset characteristics. The number of learned features and roles provide intuition about the
underlying generative process and also indicates the amount of complexity present in the network.

Dataset Features Roles Nodes Edges |T| length

Twitter Relationships 1325 12 310,809 4,095,627 41 1 day

Twitter (Copenhagen) 150 5 8,581 27,889 112 3 hours

Facebook 161 9 46,952 183,831 18 1 day

Email-Univ 652 10 116,893 1,270,285 50 60 min

Network-Trace 268 11 183,389 1,631,824 49 15 min

Internet AS 30 2 37,632 505,772 28 3 months

Enron 173 6 151 50,572 82 2 weeks

IMDB 45 3 21,257 296,188 28 1 year

Reality 99 5 97 31,694 46 1 month

have a sequence of matrices G1,G2, ...,Gt, ...,Gtmax where
each active node at time t is represented with their current
role memberships.

The number of structural roles r is automatically selected
using Minimum Description Length (MDL) criterion. How-
ever, AIC or any model selection may be used instead. Intu-
itively, learning more roles, increases model complexity, but
decreases the amount of errors. Conversely, learning less
roles, decreases model complexity, but increases the amount
of errors. In this way, MDL selects the number of behavioral
roles r such that the model complexity (number of bits) and
model errors are balanced. Naturally, the best model mini-
mizes, number of bits+ errors. See [15] for more details.

2.3 Behavioral Transition Model
Given a sequence of dynamic behaviors G = {Gt : t =

1, ..., tmax}, we can learn a model of how behavior in our
network changes over time. More formally, given two behav-
ioral snapshots, Gt−1 and Gt, we learn a transition matrix
T ∈ Rr×r that approximates the change in behavior from
time t − 1 to t. The transition matrix T represents how
likely a node is to transition from role ri to role rj for that
particular time interval:

T =


z(r1→r1) z(r1→r2) · · · z(r1→rm)

z(r2→r1) z(r2→r2) · · · z(r2→rm)

... · · ·
. . . · · ·

z(rm→r1) z(rm→r2) · · · z(rm→rm)


where T is estimated using NMF such that Gt−1T ≈ Gt.

In the simple form of the model presented above, we learn
T using only a single transition (i.e., t − 1 to t). However,
we also propose variations that leverage more available data
by considering multiple transitions (stacked model) or that
smooth over a sequence of transitions using kernel functions
(summary model). We discuss these in detail next.

2.3.1 Stacked Transition Model
The stacked model uses the training examples from the

k previous timesteps. More formally, the stacked model is
defined as, 

Gt−1

Gt−2

...
Gk−1

 T ≈


Gt

Gt−1

...
Gk


where k = t − w and w is the window size; typically w =
10. Let us denote the stacked behavioral snapshots as Gk:t

where k : t represents all the training examples from timestep
k to timestep t.

2.3.2 Summary Transition Model
This class of models uses k previous timesteps to weight

the training examples at time t using some kernel function.
The exponential decay and linear kernels are used in this
work. The temporal weights can be viewed as probabilities
that a node behavior is still active at the current time step
t, given that it was observed at time (t − k). We define
the summary behavioral snapshot GS(t) as a weighted sum
of the temporal role-memberships up to time t as follows,
GS(t) = α1Gk + ...+αw−1Gt−1 +αwGt =

∑t
i=kK(Gi; t, θ)

where α determines the contribution of each snapshot in the
summary model.

In addition to exponential and linear kernels, we experi-
mented with the inverse linear and also tried various θ val-
ues. Overall, we found the linear kernel (and exponential)
to be the most accurate with θ = 0.7. Nevertheless, the
optimal θ will depend on the type of dynamic network and
the volatility.

2.4 Remarks
For each type of transition model (e.g., stacked or sum-

mary), we may learn a global transition model that describes
how the behavior of the network as a whole changes over
time or we may learn a local transition model for each in-
dividual node. The local transition model describes more
precisely how the behavioral roles of that individual node
change over time. We can estimate the local transition

model for a node i as G
(i)
t−1T

(i) ≈ G
(i)
t using NMF. The

global transition model for the network is estimated in ex-
actly the same way as described above in §2.3.

We have found the summary model to be the best per-
former for prediction tasks because of its ability to smooth
over multiple timesteps. However, for precisely this reason,
the summary model is more difficult to interpret. There-
fore, we use the summary model for prediction tasks and
the stacked representation for data analysis tasks, due to its
interpretability. Let us note that to achieve better accuracy
in predictions, one may also estimate local transition models
for each node and use these for predicting a node’s future
role memberships. All of these options make our model flex-
ible for use in a variety of applications.

We also experimented with other variants of the DBMM
transition model, including a stacked-summary hybrid and
multi-state models, which make an explicit distinction be-
tween transitions from activate states and transitions from
inactive states. However, we opted in favor of the simpler



Features S-Center S-Edge Bridge Clique

S-Center 0.08 0.25 0.34 0.33
S-Edge 0.27 0.11 0.25 0.37
Bridge 0.29 0.20 0.17 0.34
Clique 0.24 0.24 0.29 0.23

Roles S-Center S-Edge Bridge Clique

S-Center 0.07 0.25 0.33 0.35
S-Edge 0.28 0.10 0.22 0.40
Bridge 0.29 0.18 0.16 0.37
Clique 0.24 0.25 0.29 0.22

Table 2: Validating DBMM’s ability to distinguish patterns. Note C is row-normalized.

1 (s−center) 2 (s−center) 3 (s−center) 4 (s−center) 5 (s−center) 6 (s−center) 7 (s−center) 8 (s−center) 9 (s−center) 10 (s−center)

11 (s−edge) 12 (s−edge) 13 (s−edge) 14 (s−edge) 15 (s−edge) 16 (s−edge) 17 (s−edge) 18 (s−edge) 19 (s−edge) 20 (s−edge)

21 (bridge) 22 (bridge) 23 (bridge) 24 (bridge) 25 (bridge) 26 (bridge) 27 (bridge) 28 (bridge) 29 (bridge) 30 (bridge)

31 (clique) 32 (clique) 33 (clique) 34 (clique) 35 (clique) 36 (clique) 37 (clique) 38 (clique) 39 (clique) 40 (clique)

Figure 1: The pattern of each node is listed below the mixed-membership plot whereas the colors represent
roles learned from our model. For simplicity, the node’s pattern-type is kept stable over time. Strikingly, the
DBMM clearly reveals the underlying patterns of the nodes as each pattern has a distinct signature in terms
of the role distribution. For instance, the blue role of a bridge node indicates the local similarity with that of
a star-edge node (low degree,...) while the red role captures the bridges more global and intrinsic property
of acting as a backbone for the other nodes. The other patterns are even more straightforward to interpret.
We also inject a type of global anomaly at t = 6 (bridges connecting to each other) which is clearly revealed
as such in the plots.

stacked and summary models because none of these other
models provided an obvious advantage.

While our model currently assumes the role definitions
are somewhat stationary, we have found that these roles
generalize and can even be applied across different networks.
Nevertheless, to remove this assumption, we could simply
track the loss over time and recompute the roles when it
surpasses some threshold.

3. EXPLORATORY ANALYSIS
This section explores the effectiveness of DBMM for dy-

namic network analysis tasks.

3.1 Datasets & Structural Analysis
We apply the DBMM model using a variety of dynamic

networks from different domains [23]. See Table 1 for de-
tails. Interestingly, we find a relationship between the com-
plexity of DBMM and the complexity present in the graph.
This is clearly clearly shown in Table 1 by analyzing simple
measures generated from the DBMM behavioral representa-
tion such as the number of learned features and the number
of roles. For instance, the Internet AS topology has some
hierarchical structure or recurring patterns of connectivity
among ISPs and therefore our model discovers only 30 fea-
tures. This is in contrast to networks with more complex
patterns of connectivity such as twitter and other transac-
tion networks like the email network. In these cases, the
links are instantaneous and might only last for some du-
ration of time, thus making more complex structures more
likely.

3.2 Experiments on Synthetic Data
In this section, we demonstrate the ability of DBMM

to distinguish between common graph patterns (and conse-
quently recover the synthetic roles). For this task, we design
a simple graph generator that constructs graphs probabilis-
tically with four main patterns: ‘center of a star’, ‘edge of
a star’, bridge nodes (connecting stars/cliques), and clique
nodes. After constructing the graph, we validate that the

DBMM model captured these patterns by measuring if the
extracted features and roles represent the known probabilis-
tic patterns. We do this by computing the pairwise eu-
clidean distance matrix D using the initial feature matrix
V (and role-membership matrix G). Let ri denote the ac-
tual pattern of node i, and P = {(i, j)|ri = p, rj = q} then
Cp,q =

∑
(i,j)∈P Di,j .

Clearly, the roles and features from nodes of the same pat-
tern are shown to be more similar than the others (smaller
values along the diagonal). See Table 2.3. Additionally, the
patterns that are structurally similar to one another are rep-
resented as such by our model (star-center and clique). In
Fig. 1, we visualize the mixed-memberships of 10 randomly
chosen nodes from each pattern-type. Each pattern has a
distinct and consistent signature in terms of the role distri-
bution.

3.3 Interpretation & Analysis
We start with an illustrative example of applying DBMM

to a large IP trace network, shown in Figure 2. We first
plot the time-evolving mixed-memberships from four nodes
shown in Figure 2(b) and then visualize their correspond-
ing transition models in Figure 2(a). In the time-evolving
mixed-memberships, inactivity is represented by white bars
whereas in the transition models inactivity corresponds to
the last row/column. The transition models are learned
using the stacked representation which aids in the under-
standability and interpretation of the roles and their mod-
eled transitions.

The time-evolving mixed-memberships for each of the four
example nodes in Figure 2(b) show distinct patterns from
one another which are easy to identify. The four patterns
represented by these nodes can be classified as having the
following patterns of structural behavior,
1. Structural Stability. This node’s structural behavior

(and communication pattern) doesn’t is relatively stable
over the time.

2. Homogeneous. The node for the most part takes on a
single behavioral role.



3. Abrupt transition. Their structural behavior changes
abruptly. In the IP-network, it could be that the IP was
released and someone was assigned it or perhaps that the
machine was compromised and began acting maliciously.

4. Periodic activity. The node has periodic activity, but
maintains similar structural behavior. In the case of the
IP-communication network, this machine could be in-
fected and every 30 minutes sends out a communication
to the master indicating it’s connected and “listening”.

For the four example nodes, we show their transition mod-
els in Figure 2(a). The transition models represent the prob-
ability of transitioning or taking on the structural behavior
of role j given that your current role (or main role) is role
i. For instance, node 2 homogeneously takes on the red role
over time as discussed previously. From Figure 2(c), we see
that the red role is “role 9”, and looking back at the node’s
learned transition model, we find that column 9 contains
most of the mass, which represents that their is a high prob-
ability of transitioning from any other role to the red role. As
shown in the mixed-memberships over time, this is exactly
what is expected. As another example, we find that node
4 usually transitions from a mix of active roles to the inac-
tive role (i.e., the inactive role is represented by column/row
eleven). Therefore, we would expect our learned transition
model to capture this by placing most of the mass on the
last column, representing the probability of going inactive
after having a mix of active roles in the previous timestep,
which is exactly what we see in the fourth transition model.

Instead of providing subjective or anecdotal evidence for
what the roles represent, we interpret the roles of the DBMM
with respect to well-known node measurements (e.g., de-
gree, clustering coefficient, betweenness,...). We extend the
analytical tools from [15] for use in interpreting the role
dynamics. The first technique interprets the roles using the
dynamic node-role memberships Gt and a node measure ma-
trix Mt ∈ Rn×m to compute a non-negative matrix Et such
that GtEt ≈ Mt . The node measurements used are be-
tweenness, biconnected components, PageRank, clustering
coefficient, and degree. The matrix Et represents the con-
tributions of the node measures to the roles at time t. We
report average contributions over time.

Figure 2(c) shows this quantitative interpretation of roles
for the IP network. Intuitively, the first role represents nodes
with high PageRank, while role five represents nodes with
high betweenness, whereas role nine represents nodes with
large clustering coefficient. The other roles represent more
specialized structural motifs that were not captured by the
set of traditional measures used for interpretation.

The DBMM can be used to understand the temporal be-
havior across a variety of time-evolving networks. Figure 3
shows another example for an email communication net-
work. Just as before, we can identify significant trends and
patterns and interpret these using the role interpretations
from Figure 3(b). One notable behavioral pattern in the
email communications is that most users have a set of roles
for the daytime and a different set for night. Intuitively,
one set of roles is work related and the other is more per-
sonal/family related (see nodes 1 & 2, among others). We
also find nodes that have inconsistent or unstable behavior
over the time, such as 17, 18, 19, among others. Addition-
ally, some nodes have relatively stable structural behavior
over the two days, such as node 4. This is also unusual,
since one might expect a user’s behavior to change from

(a) Transition Models

1 2

3 4

(b) Time-evolving Mixed-Memberships

#BCC Betweenness CC PageRank Degree
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0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

Role1

Role2
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Role4

Role5

Role6

Role7

Role8

Role9

Role10

(c) Role Interpretation

Figure 2: The DBMM transition model effec-
tively captures the diverse temporal behavior of
hosts in a computer network. (a) Transition ma-
trices for 4 hosts. The y-axis represents the role
the node transitions from, the x-axis is the role we
transition to. Inactivity is represented by the last
row/column. (b) Corresponding role-memberships
over time. The x-axis represents time while the y-
axis represents the role distribution at each point in
time. Each distinct color represents a learned role.
(c) Characteristics of individual roles.

the work hours to the evening/night. However, users that
are consistently dominated by multiple active roles are of
importance (may serve in managerial or leadership roles),
since they connect to groups of nodes with different types of
structural patterns (see nodes 5-7).

3.4 Clustering Temporal Behaviors
Lastly to show the patterns of the learned transition ma-

trices, we cluster nodes based on their temporal behaviors.
We find that this clustering reveals the underlying structural
patterns of the evolving mixed-memberships. Formally, let
T (i) and T (j) be the transition matrices of two nodes i and
j. Then we create an r × r vector from each of the node
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(a) Time-evolving Mixed-Memberships (Email)

#BCC Betweenness CC PageRank Degree
0

0.02

0.04

0.06

0.08

0.1

 

 

Role1

Role2

Role3

Role4

Role5

Role6

Role7

Role8

Role9

Role10

(b) Email Role Interpretation

Figure 3: The DBMM model allows us to uncover
patterns of behavior in an email network. (a) evolv-
ing memberships for a group of nodes and (b) the
characteristics associated with the roles.

transition models and define a similarity function between
these vectors.

First we estimate a single transition model T for each node
using the stacked model. We then compute an n×n similar-
ity matrix using Frobenious loss between the transition ma-
trices from the nodes. Next, we apply the classical k-means
clustering algorithm to cluster the nodes by their transi-
tion matrices. Afterwards, we compute the closest rank-k
approximation (k = 2 or 3) of the similarity matrix. The
nodes are plotted using the low-rank approximation and la-
beled using the previous clustering algorithm. To reveal the
structural transition pattern, we then compute the average
dynamic mixed-membership for each cluster using only the
nodes from that cluster.

This clustering method reveals common structural trends
and patterns between nodes. For instance, this technique
may group nodes together that share similar transitional
patterns such as nodes with stable roles vs. nodes with
more dynamic roles or nodes with high activity vs. nodes
with low activity. An example is provided in Figure 4. For
clarity in the visualization, we randomly selected a small
subset of nodes from the 183,389 candidates and identified
common transition patterns among them. The first visual-
ization in Figure 4(a) identifies four distinct well-separated
clusters of nodes with similar transition models. Figure 4(b)
shows the average dynamic behavioral mixed-membership
for each cluster. This visualization shows that each cluster
represents a unique structural transition pattern between
the nodes. The structural patterns can be interpreted us-
ing the previous role interpretation from Figure 2(c). This
technique can be used for general exploratory analysis such
as characterizing the patterns and trends of nodes or even-
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Transition Pattern4

(a) Transition Clustering

Transition Pattern 1 Transition Pattern 2

Transition Pattern 3 Transition Pattern 4

(b) Dynamic Mixed-Membership Patterns

Figure 4: The DBMM model provides an intuitive
means of clustering nodes that exhibit similar pat-
terns of behavior over time. (a) identifies four dis-
tinct clusters of nodes with similar transition pat-
terns. (b) provides a sense of the behavior of each
cluster in terms of the average role-membership over
time. Again, we see that DBMM captures differ-
ences in both overall static behavior (i.e., the spe-
cific roles that dominate) and in patterns of how
behaviors (i.e., roles) change over time.

tually used as a means to detect anomalies or nodes that do
not fit any transition pattern.

4. PREDICTING FUTURE BEHAVIOR
In this section, we further validate the utility of the DBMM

model by demonstrating its ability to predict the future be-
havior of nodes. This could be useful for optimizing caches
on the Web, or for improving dynamic social recommenda-
tion systems, among many others.

Models. The goal is to accurately predict Gt+1 given Gs(t),
the summary behavioral snapshot described in Section 2.3.2.
Our primary means of predicting Gt+1 is using our DBMM
summary transition model T as follows: Ĝt+1 = Gt T.
We compare this summary model to two sensible baselines:
PrevRole and AvgRole. PrevRole simply assigns each node
the role distribution from the previous time t. That is,
Ĝt+1 = Gt. AvgRole assigns each node the average role
distribution over all nodes at time t. The AvgRole model
can be expressed as Ĝt+1 = Gt TA where TA is estimated
from Gt = [1] T. Essentially, PrevRole assumes node behav-
ior does not change from each point in time to the next and
AvgRole assumes that all nodes exhibit the average behavior
of the network.

Evaluation. We consider two strategies for evaluating our
predictive models: (a) compare the predicted Ĝt+1 to the
true Gt+1 using a loss function (we use the Frobenious norm)

and (b) Use Ĝt+1 to predict the modal role of each node at
time t+ 1 and evaluate these predictions using a multi-class
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(a) IP-Trace
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(b) Twitter Relationships
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(d) Facebook
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(e) Twitter Copenhagen
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(f) Enron
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(g) IMDB

0 5 10 15 20 25
80

90

100

110

120

130

140

150

160

Time

F
ro

b
e
n
iu

s
 L

o
s
s

 

 

Summary (Linear)

Baseline (Prev Role)

Baseline (Avg Role)

(h) Internet AS

Figure 5: The DBMM transition model accurately predicts future behavior of individual nodes (i.e., mixed
role membership) compared to sensible baseline models.

AUC (Area Under the ROC curve) measure. We describe
each of these strategies more formally below.

Frobenious Loss on G. The goal here is to estimate Gt+1

as accurately as possible. The approximation error between
the estimated node memberships Ĝt+1 = GtTt+1 and the
true node memberships Gt+1 is defined as ||Gt+1− Ĝt+1||F
Structural Prediction with Multi-class AUC. This is a multi-
class classification task where the true class label for node
i is the modal role from the ith row of Gt+1 (i.e., the role
with maximum membership for this node). The predicted
class label for node i is the modal role from the ith row of
Ĝt+1.

We evaluate the predictions using a generalization of AUC
extended for multi-class problems. In particular, we com-
pute the AUC of all combinations of labels and take the
mean (also known as Total AUC) [13]. The difficulty of the
prediction task varies based on the number of roles discov-
ered, complexity of the network evolution, and the type of
time-evolving network (e.g., transactional vs. stable).

Results. Figure 5 demonstrate that the DBMM summary
transition model is an effective predictor across the range
of experiments. With few exceptions, DBMM outperforms
both baselines for all data sets and timesteps. This is even
true for the more complex time-evolving networks such as
Twitter, email, and the IP-traces, which are more transac-
tional with rapidly evolving network structure. For brevity,
some findings were omitted, for others see [23].

In addition to validating the DBMM model, both fig-
ures offer some interesting insights into the characteristics
of time-evolving networks. For example, an increase in loss
over time may indicate a ”concept drift” where behavior in
the network has evolved to the point where the current roles
can no longer adequately explain node behavior. This effect
is seen most prominently in Figures 5(b), 5(d), 5(g) and 5(h).
Interestingly, the drift we see in Figure 5(h) agrees with the

current understanding that the underlying evolutionary pro-
cess of the Internet AS is not constant, as was previously
believed [19, 29]. Most notably, there is recent evidence of
the Internet topology transitioning from hierarchical to a
flat topological structure [7, 6].

Furthermore, the figures provide insights into behavioral
anomalies, such as the spike we see in Figure 5(g). The spike
in loss indicates the significant deviation of the node roles
at a specific time.

Finally, in the large Twitter Relationships network, we
see seasonality among the role transitions. In particular, we
find that the users generally behave significantly different
over the weekends, seen by the increase in loss on these days.
Intuitively, we would expect users to be tweeting about dif-
ferent topics and using the system in different manner than
they do during the work days. The Twitter Copenhagen net-
work captures the more locally-temporal seasonality; that is
users behave differently during the daytime and the night-
time hours.

5. ANOMALOUS DYNAMIC PATTERNS
We further demonstrate the use of DBMMs for detecting

anomalies in time-evolving networks. In particular, we for-
mulate this problem with respect to identifying nodes that
have unusual structural transition patterns. For instance, a
node might transition from being a hub (i.e., a node with
many people linking to it) to a node with low degree.

5.1 Node Transition Anomalies
While there are many ways to define an anomaly detection

technique with respect to the DBMM model, we propose an
intuitive algorithm shown in Alg. 1 that uses a node’s transi-
tion model for predicting the network memberships at t+ 1.
The anomaly score is the difference between the predicted
network mixed-memberships and the ground-truth mixed-
memberships. Therefore, the score represents the divergence
of that nodes transitions from the entire network. One sim-



(a) T Model (b) T Model (c) Network T Mod

(d) Louise Kitchen (e) Sara Shackleton (f) Network

#BCC Betweenness CC PageRank Degree
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

Role1

Role2

Role3

Role4

Role5

Role6

(g) Role Interpretation

Figure 6: The DBMM transition model provides
an effective means of automatically discovering and
visualizing nodes with anomalous temporal behav-
ior. (a)-(b) are the transition models for two of
the most anomalous nodes in the Enron email net-
work compared to (c) the normal network transition
model. (d)-(f) show the corresponding role mem-
berships over time. (g) shows the characteristics of
roles.

ple example is shown in Figure 6(a) where we find Louise
Kitchen as having unusual behavioral transitions.

5.2 Time-varying Node Anomalies
For detecting the specific time interval in which a node has

unusual behavior we use the previous method with a few sub-
tle distinctions. The global and node models are estimated
at each timestep (in a sort of streaming fashion) using the
stacked representation with a shorter window (for leveraging
past training examples). The final result is a ranked list of
potential node anomalies for each timestep, shown in Fig-
ure 8. The justification for such an approach is that nodes
may become anomalous or have unusual behavior only for
a specified time interval. In the case of IP-communications,
it is unlikely for the behavior of an IP-address to remain
unusual as IP-addresses are released/expires and users are
assigned entirely new IP-addresses. These types of dynamic
anomalies are shown in Figure 8.

5.3 Anomalous Structural Transitions
We first interpret the roles and their temporal variation

quantitatively as shown in Figure 6(g) and then provide
some simple examples of nodes that have unusual behav-
ior transitions. Intuitively, the first role represents nodes
with high clustering coefficient, the second role represents
mainly nodes with high pagerank, while the third and fourth
roles represent some type of combination of these proper-
ties indicating a more complex structural motif that is not
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Figure 7: The DBMM anomaly detector effectively
captures differences in both static and dynamic be-
havior in an email network. (a) shows that normal
and anomalous nodes (top-100) differ in their role
distribution (i.e., overall static behavior). (b)-(c)
show that normal and anomalous nodes also differ in
how their behavior changes over time, with anoma-
lies exhibiting more stable behavior over time than
normal.

sufficiently represented by the selected node metrics. How-
ever, the fifth role represents nodes with high degree and
the sixth role represents nodes that are articulation points
or that have high betweenness. Additionally, by analyzing
the neighbors roles dynamically, we find that nodes with
high clustering coefficient primarily are neighbors to nodes
with high betweenness or high degree (this plot has been
removed for brevity).

In Figure 6(e), we find Louise Kitchen, one of the Enron
executives who was involved in the Fraud, as having unusual
behavioral transitions. Further examination of the network
transition model and the average evolution of the behavioral
mixed-memberships provide further insights into his abnor-
mal activities. In particular, there are two main role transi-
tions (r3 → r7 and r4 → r1) in Louise Kitchen’s transition
model that are in contradiction with the network transition
model shown in Figure 6(c). Furthermore, analyzing the in-
dividual changes to the mixed-memberships over time com-
pared with the average behavioral mixed-memberships pro-
vides additional insight. For instance, the first two mixed-
memberships vectors of Louise Kitchen are mainly red and
then begin to deviate significantly with seemingly no un-

Algorithm 1: Anomalous Structural Transitions

Input: G = {Gt : t = 1, ..., tmax} (evolving
mixed-memberships)

Output: x (vector of anomalous scores)

1 for i← 1 to n do

2 T (i) ∈ Rr×r ← NMF (G
(i)
1:t−1,G

(i)
2:t)

3 Ĝt+1 = T (i) ·Gt

4 x(i) =
∥∥∥Ĝt+1 −Gt+1

∥∥∥
F

5 end
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Figure 8: The DBMM model allows us to find
nodes that are anomalous for only short periods of
time and normal otherwise. Such temporally local
anomalies are often impossible to find using static
graph analysis because brief abnormal periods are
drowned out by mostly normal behavior. (a) shows
examples of short lived anomalies in a computer net-
work. (b) shows the corresponding behavior over
time for each node in detail.

derlying correlation or pattern between the role transitions.
Moreover, there is not any significant correlation between
Louise’s mixed-memberships and the average memberships
at each point in time.

In addition, we also identify interesting patterns of the
nodes with unusual behavioral transitions in Figure 7. In
particular, the DBMM anomaly detector effectively captures
differences in both static and dynamic behavior in an email
network. Interestingly, in 7(b), normal users exhibit a clear
cyclical pattern which indicates that normal nodes have a
set of roles during the day and another set at night (which
agrees with intuition). In contrast, the anomalies 7(c) have
stable roles over the time that barely fluctuate.

Figure 8 also indicates that the DBMM model allows us to
find nodes that are anomalous for only short periods of time
and normal otherwise. Such temporally local anomalies are
often impossible to find using static graph analysis because
brief abnormal periods are drowned out by mostly normal
behavior. 8(a) shows examples of short lived anomalies in a
computer network. 8(b) shows the corresponding behavior
over time for each node in detail.

Synthetic Data. In a separate set of experiments, we further
validate our “unusual structural transition” anomaly detec-
tor by injecting anomalies into synthetic data (see § 3.2).
Initially, the dynamics of nodes are predefined to have nor-
mal transitions between patterns (e.g., star-center to clique).
Then we inject some nodes with anomalous transition be-
havior by randomly transitioning to an abnormal pattern
which we define as star-edge to clique. For 200 repeated

Table 3: Performance Analysis of the Dynamic Be-
havioral Mixed-Membership Model. The dMMSB
takes a day to handle 1,000 nodes [30], while our
model takes only 8.44 minutes for 8,000 nodes.

Dataset Nodes Edges Performance

Enron 151 50,572 117.51 sec

Twitter (Copen) 8,581 27,889 506.61 sec

Facebook 46,952 183,831 1,468.65 sec

Internet AS 37,632 505,772 1,922.85 sec

Network-Trace 183,389 1,631,824 16,138.71 sec

simulations, we achieve high accuracy (88.5%) in detecting
the anomalous behavior.

6. SCALABILITY AND COMPLEXITY
Most importantly, our dynamic role model is linear in

the number of edges. Let n be the number of nodes, f
be the number of features, r be the number of roles and
t be the number of timesteps. The feature discovery is
O(t(mf + nf2)) [14]. For the NMF step, we use the multi-
plicative update method which has worst case O(tnfr). The
transition models is O(tnr2) using the multiplicative update
method. Thus, the running time of DBMM is linear in the
number of edges, specifically, O(t(mf + nfr + nr2)). The
time-scale t is usually small compared to the edges (even
when the time-scale corresponds to minutes or seconds in
the IP-trace data). A more accurate bound can be stated
in terms of the maximum number of edges at any given
timestep.

Our model is capable of handling realistic networks such
as social and technological networks consisting of millions of
nodes and edges. This is in contrast to a similar dynamic
mixed-membership models that have been recently proposed
such as the dMMSB [30, 9]. These models are quadratic in
the number of nodes and therefore unable to scale to the
realistic networks with the number of edges in the millions.
Furthermore, these models have been typically used for visu-
alizing trivial sized networks of 18 nodes up to 1,000 nodes.
This is in contrast to our work where we apply DBMM not
only for visualizations, but for a variety of analysis tasks
using large dynamic networks.

Moreover, the dMMSB can handle 1,000 nodes in a day
[30] (See page 30), while our model handles ≈8,000 nodes
in 506.61 seconds (or 8 minutes and 26 seconds) shown in
Table 3. We provide performance results for other larger
datasets of up to 183,389 nodes and 1,631,824 edges. In all
cases, even for these large networks with over a million edges,
our model takes less than a day to compute and the perfor-
mance results show the linearity of our model in the number
of edges. For the scalability experiments, we recorded the
performance results using a commodity machine Intel Core
i7 @2.7Ghz with 8Gb of memory.

In addition, the proposed DBMM model is also trivially
parallelizable (e.g., using Hadoop/MapReduce on Amazon
EC2/Cloud) as features, roles, and transition models can be
learned at each timestep independent of one another.

7. RELATED WORK
There has been an abundance of work in analyzing dy-

namic networks. However, the majority of this work focuses
on dynamic patterns [10, 17, 16, 22, 27], temporal link pre-



diction [8], anomaly detection [1], dynamic communities [18,
28, 11], dynamic ranking [20, 24], and many others [31, 12].

In contrast, we propose a scalable temporal behavioral
model that captures the node behaviors over time and con-
sequently learns a predictive model for how these behav-
iors evolve over time. Perhaps the most related work is
that of [9] where they develop the dMMSB model to iden-
tify roles in the graph and how these memberships change
over time. However, this type of mixed-membership model
assumes a specific parametric form, which is not scalable
(1,000 nodes takes a day to model), and where the groups
are defined through linkage to specific nodes (in particu-
lar types of groups) rather than more general node behav-
ior or structural properties [30]. This is in contrast to our
proposed model, which is based on our intuitive behavioral
representation and can be interpreted quantitatively. In ad-
dition, our model is not tied to any single notion of behavior
and thus is flexible in the roles discovered and generalizable.
Moreover, not only do we evaluate our model on detect-
ing unusual behavior, identifying explainable patterns and
trends, and for clustering nodes with respect to their tran-
sition patterns, but we apply our model on large real-world
networks to demonstrate its scalability. To the best of our
knowledge, our proposed model is the first scalable dynamic
mixed-membership model capable of identifying explainable
patterns and trends on large networks.

8. CONCLUSIONS
We proposed a dynamic behavioral mixed-membership

model for large networks and used it for identifying inter-
esting and explainable patterns and trends. Moreover, we
demonstrated its scalability on a variety of real-world tempo-
ral networks and provided striking performance results. The
experiments have shown the scalability, flexibility, and effec-
tiveness of our model for identifying interesting patterns, de-
tecting unusual structural transitions, and predicting the fu-
ture structural changes of the network and individual nodes.
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